enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reynolds equation - Wikipedia

    en.wikipedia.org/wiki/Reynolds_Equation

    The general Reynolds equation is: ... A full derivation of the Reynolds Equation from the Navier-Stokes equation can be found in numerous lubrication text books. [2] [3]

  3. Reynolds-averaged Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Reynolds-averaged_Navier...

    The basic tool required for the derivation of the RANS equations from the instantaneous Navier–Stokes equations is the Reynolds decomposition.Reynolds decomposition refers to separation of the flow variable (like velocity ) into the mean (time-averaged) component (¯) and the fluctuating component (′).

  4. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The Brezina equation. The Reynolds number can be defined for several different situations where a fluid is in relative motion to a surface. [n 1] These definitions generally include the fluid properties of density and viscosity, plus a velocity and a characteristic length or characteristic dimension (L in the above equation). This dimension is ...

  5. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The derivation of the Navier–Stokes equation involves the consideration of forces acting on fluid elements, so that a quantity called the stress tensor appears naturally in the Cauchy momentum equation. Since the divergence of this tensor is taken, it is customary to write out the equation fully simplified, so that the original appearance of ...

  6. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    From the equation it is shown that for a flow with a large Reynolds Number there will be a correspondingly small convective boundary layer compared to the vessel’s characteristic length. [5] By knowing the Reynolds and Womersley numbers for a given flow it is possible to calculate both the transient and the convective boundary layer ...

  7. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    The equation of motion for Stokes flow can be obtained by linearizing the steady state Navier–Stokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the Navier–Stokes equations reduces it to the momentum balance in the Stokes equations: [1]

  8. Reynolds stress - Wikipedia

    en.wikipedia.org/wiki/Reynolds_Stress

    In fluid dynamics, the Reynolds stress is the component of the total stress tensor in a fluid obtained from the averaging operation over the Navier–Stokes equations to account for turbulent fluctuations in fluid momentum.

  9. Turbulence kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Turbulence_kinetic_energy

    Accurate prescription of TKE as initial conditions in CFD simulations are important to accurately predict flows, especially in high Reynolds-number simulations. A smooth duct example is given below. k = 3 2 ( U I ) 2 , {\displaystyle k={\frac {3}{2}}(UI)^{2},} where I is the initial turbulence intensity [%] given below, and U is the initial ...