Search results
Results from the WOW.Com Content Network
In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.
It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another. Simplistic string metrics such as Levenshtein distance have expanded to include phonetic, token , grammatical and character-based methods of statistical comparisons.
In statistics, econometrics and related fields, multidimensional analysis (MDA) is a data analysis process that groups data into two categories: data dimensions and measurements. For example, a data set consisting of the number of wins for a single football team at each of several years is a single-dimensional (in this case, longitudinal) data ...
If it can take on two real values and all the values between them, the variable is continuous in that interval. [2] If it can take on a value such that there is a non- infinitesimal gap on each side of it containing no values that the variable can take on, then it is discrete around that value. [ 3 ]
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
The four datasets composing Anscombe's quartet. All four sets have identical statistical parameters, but the graphs show them to be considerably different. Anscombe's quartet comprises four datasets that have nearly identical simple descriptive statistics, yet have very different distributions and appear very different when graphed.
In statistics, data can have any of various types. Statistical data types include categorical (e.g. country), directional (angles or directions, e.g. wind measurements), count (a whole number of events), or real intervals (e.g. measures of temperature).
A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot. Entries in an analysis of variance table can also be regarded as summary statistics. [1]: 378