Search results
Results from the WOW.Com Content Network
Penrose graphical notation (tensor diagram notation) of a matrix product state of five particles. In mathematics and physics, Penrose graphical notation or tensor diagram notation is a (usually handwritten) visual depiction of multilinear functions or tensors proposed by Roger Penrose in 1971. [1]
When interpreted in the monoidal category of vector spaces and linear maps with the tensor product, string diagrams are called tensor networks or Penrose graphical notation. This has led to the development of categorical quantum mechanics where the axioms of quantum theory are expressed in the language of monoidal categories.
Penrose diagram of an infinite Minkowski universe, horizontal axis u, vertical axis v. In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity.
Every framed trace diagram corresponds to a multilinear function between tensor powers of the vector space V. The degree-1 vertices correspond to the inputs and outputs of the function, while the degree-n vertices correspond to the generalized Levi-Civita symbol (which is an anti-symmetric tensor related to the determinant). If a diagram has no ...
For periodic boundary conditions,Penrose graphical notation (tensor diagram notation) of a matrix product state of five particles. A matrix product state (MPS) is a representation of a quantum many-body state.
Foundational research on tensor networks began in 1971 with a paper by Roger Penrose. [9] In “Applications of negative dimensional tensors” Penrose developed tensor diagram notation, describing how the diagrammatic language of tensor networks could be used in applications in physics.
The notation parallels the idea of Penrose graphical notation and Feynman diagrams. The diagrams consist of arrows and vertices with quantum numbers as labels, hence the alternative term " graphs ". The sense of each arrow is related to Hermitian conjugation , which roughly corresponds to time reversal of the angular momentum states (c.f ...
A metric tensor is a (symmetric) (0, 2)-tensor; it is thus possible to contract an upper index of a tensor with one of the lower indices of the metric tensor in the product. This produces a new tensor with the same index structure as the previous tensor, but with lower index generally shown in the same position of the contracted upper index.