Search results
Results from the WOW.Com Content Network
Let X be a subset of R n (usually a box-constrained one), let f, g i, and h j be real-valued functions on X for each i in {1, ..., m} and each j in {1, ..., p}, with at least one of f, g i, and h j being nonlinear. A nonlinear programming problem is an optimization problem of the form
Fractional programming studies optimization of ratios of two nonlinear functions. The special class of concave fractional programs can be transformed to a convex optimization problem. Nonlinear programming studies the general case in which the objective function or the constraints or both contain nonlinear parts. This may or may not be a convex ...
A dynamical system may also be introduced to embed operations research problems within the framework of optimal control theory. [4] [5] Optimal control is an extension of the calculus of variations, and is a mathematical optimization method for deriving control policies. [6]
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.
"An introduction to nonlinear model predictive control". Summerschool on "The Impact of Optimization in Control", Dutch Institute of Systems and Control, C. W. Scherer and J. M. Schumacher, Editors : 3.1 – 3.45 .
Nonlinear control theory is the area of control theory which deals with systems that are nonlinear, time-variant, or both. Control theory is an interdisciplinary branch of engineering and mathematics that is concerned with the behavior of dynamical systems with inputs, and how to modify the output by changes in the input using feedback ...
An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...