Search results
Results from the WOW.Com Content Network
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
The Laplace operator is a second-order differential operator in the n-dimensional Euclidean space, defined as the divergence of the gradient (). Thus if f {\displaystyle f} is a twice-differentiable real-valued function , then the Laplacian of f {\displaystyle f} is the real-valued function defined by:
The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.
For any twice-differentiable real-valued function f defined on Euclidean space R n, the Laplace operator (also known as the Laplacian) takes f to the divergence of its gradient vector field, which is the sum of the n pure second derivatives of f with respect to each vector of an orthonormal basis for R n.
Discrete Laplace operator is often used in image processing e.g. in edge detection and motion estimation applications. [4] The discrete Laplacian is defined as the sum of the second derivatives and calculated as sum of differences over the nearest neighbours of the central pixel. Since derivative filters are often sensitive to noise in an image ...
Verbally, the second version is the second derivative in the direction of the gradient. In the case of the infinity Laplace equation Δ ∞ u = 0 {\displaystyle \Delta _{\infty }u=0} , the two definitions are equivalent.
The continuous -Laplace operator is a second-order differential operator that can be well-translated to finite weighted graphs. It allows the translation of various partial differential equations, e.g., the heat equation, to the graph setting.
Using notations from vector calculus, the wave equation can be written compactly as =, or =, where the double subscript denotes the second-order partial derivative with respect to time, is the Laplace operator and the d'Alembert operator, defined as: =, = + +, =.