Search results
Results from the WOW.Com Content Network
GCE-Math is a version of C/C++ math functions written for C++ constexpr (compile-time calculation) CORE-MATH, correctly rounded for single and double precision. SIMD (vectorized) math libraries include SLEEF, Yeppp!, and Agner Fog's VCL, plus a few closed-source ones like SVML and DirectXMath. [9]
Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.
bc first appeared in Version 6 Unix in 1975. It was written by Lorinda Cherry of Bell Labs as a front end to dc, an arbitrary-precision calculator written by Robert Morris and Cherry. dc performed arbitrary-precision computations specified in reverse Polish notation. bc provided a conventional programming-language interface to the same capability via a simple compiler (a single yacc source ...
dc (desk calculator) is a cross-platform reverse-Polish calculator which supports arbitrary-precision arithmetic. [1] It was written by Lorinda Cherry and Robert Morris at Bell Labs. [2] It is one of the oldest Unix utilities, preceding even the invention of the C programming language. Like other utilities of that vintage, it has a powerful set ...
The C++ programming language has support for string handling, mostly implemented in its standard library. The language standard specifies several string types, some inherited from C, some designed to make use of the language's features, such as classes and RAII. The most-used of these is std::string.
The name PARI is a pun about the project's early stages when the authors started to implement a library for "Pascal ARIthmetic" in the Pascal programming language (although they quickly switched to C), and after "pari de Pascal" (Pascal's Wager). [3] The first version of the gp calculator was originally called GPC, for Great Programmable ...
Memory modules added RAM main memory to the calculator, allowing more programming steps and/or more data registers. The original HP-41C had a main memory of 63 registers of 7 bytes each. Each register could hold either a number, a 6-character string, or up to seven program steps in the FOCAL language (program steps used a variable number of bytes).
These BASIC dialects are optimised for calculator use, combining the advantages of BASIC and keystroke programming. They have little in common with mainstream BASIC. [4] [5] [6] The version for the Ti-89 and subsequent is more fully featured, including the full set of string and character manipulation functions and statements in standard Basic.