Search results
Results from the WOW.Com Content Network
Short-term memory has limited capacity and is often referred to as "working-memory", however these are not the same. Working memory involves a different part of the brain and allows you to manipulate it after initial storage. The information that travels from sensory memory to short-term memory must pass through the Attention gateway. The ...
A Lebesgue measurable function is a measurable function : (,) (,), where is the -algebra of Lebesgue measurable sets, and is the Borel algebra on the complex numbers. Lebesgue measurable functions are of interest in mathematical analysis because they can be integrated.
Memory is a complex system that relies on interactions between many distinct parts of the brain. In order to fully understand memory, researchers must cumulate evidence from human, animal, and developmental research in order to make broad theories about how memory works. Intraspecies comparisons are key.
A main area of study in invariant descriptive set theory is the relative complexity of equivalence relations. An equivalence relation on a set is considered more complex than an equivalence relation on a set if one can "compute using " - formally, if there is a function : which is well behaved in some sense (for example, one often requires that is Borel measurable) such that ,: ().
Overview of the forms and functions of memory. Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed.It is the retention of information over time for the purpose of influencing future action. [1]
The Riesz–Fischer theorem also applies in a more general setting. Let R be an inner product space consisting of functions (for example, measurable functions on the line, analytic functions in the unit disc; in old literature, sometimes called Euclidean Space), and let {} be an orthonormal system in R (e.g. Fourier basis, Hermite or Laguerre polynomials, etc. – see orthogonal polynomials ...
In mathematical analysis, a Carathéodory function (or Carathéodory integrand) is a multivariable function that allows us to solve the following problem effectively: A composition of two Lebesgue-measurable functions does not have to be Lebesgue-measurable as well. Nevertheless, a composition of a measurable function with a continuous function ...
Bochner spaces are often used in the functional analysis approach to the study of partial differential equations that depend on time, e.g. the heat equation: if the temperature (,) is a scalar function of time and space, one can write (()) ():= (,) to make a family () (parametrized by time) of functions of space, possibly in some Bochner space.