Search results
Results from the WOW.Com Content Network
Real-valued functions encountered in applications tend to be measurable; however, it is not difficult to prove the existence of non-measurable functions. Such proofs rely on the axiom of choice in an essential way, in the sense that Zermelo–Fraenkel set theory without the axiom of choice does not prove the existence of such functions.
Short-term memory has limited capacity and is often referred to as "working-memory", however these are not the same. Working memory involves a different part of the brain and allows you to manipulate it after initial storage. The information that travels from sensory memory to short-term memory must pass through the Attention gateway. The ...
The vector space of (equivalence classes of) measurable functions on (,,) is denoted (,,) (Kalton, Peck & Roberts 1984). By definition, it contains all the , and is equipped with the topology of convergence in measure.
The Riesz–Fischer theorem also applies in a more general setting. Let R be an inner product space consisting of functions (for example, measurable functions on the line, analytic functions in the unit disc; in old literature, sometimes called Euclidean Space), and let {} be an orthonormal system in R (e.g. Fourier basis, Hermite or Laguerre polynomials, etc. – see orthogonal polynomials ...
Let (,,) be a measure space, i.e. : [,] is a set function such that () = and is countably-additive. All functions considered in the sequel will be functions :, where = or .We adopt the following definitions according to Bogachev's terminology.
A Lebesgue-measurable set can be "squeezed" between a containing G δ set and a contained F σ. I.e, if A is Lebesgue-measurable then there exist a G δ set G and an F σ F such that G ⊇ A ⊇ F and λ(G \ A) = λ(A \ F) = 0. Lebesgue measure is both locally finite and inner regular, and so it is a Radon measure.
For (,) a measurable space, a sequence μ n is said to converge setwise to a limit μ if = ()for every set .. Typical arrow notations are and .. For example, as a consequence of the Riemann–Lebesgue lemma, the sequence μ n of measures on the interval [−1, 1] given by μ n (dx) = (1 + sin(nx))dx converges setwise to Lebesgue measure, but it does not converge in total variation.
where α(x) is a function of bounded variation on the interval [0, 1], and the integral is a Riemann–Stieltjes integral. Since there is a one-to-one correspondence between Borel regular measures in the interval and functions of bounded variation (that assigns to each function of bounded variation the corresponding Lebesgue–Stieltjes measure ...