enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Another important class of problems involves cantilever beams. The bending moments (), shear forces (), and deflections for a cantilever beam subjected to a point load at the free end and a uniformly distributed load are given in the table below. [5]

  3. Cantilever method - Wikipedia

    en.wikipedia.org/wiki/Cantilever_method

    The cantilever method is an approximate method for calculating shear forces and moments developed in beams and columns of a frame or structure due to lateral loads. The applied lateral loads typically include wind loads and earthquake loads, which must be taken into consideration while designing buildings.

  4. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    In this case, the equation governing the beam's deflection can be approximated as: = () where the second derivative of its deflected shape with respect to (being the horizontal position along the length of the beam) is interpreted as its curvature, is the Young's modulus, is the area moment of inertia of the cross-section, and is the internal ...

  5. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    The bending stiffness is the resistance of a member against bending deflection/deformation.It is a function of the Young's modulus, the second moment of area of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.

  6. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    Non-circular cross-sections always have warping deformations that require numerical methods to allow for the exact calculation of the torsion constant. [2] The torsional stiffness of beams with non-circular cross sections is significantly increased if the warping of the end sections is restrained by, for example, stiff end blocks. [3]

  7. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]

  8. Cantilever - Wikipedia

    en.wikipedia.org/wiki/Cantilever

    The top and bottom example may be considered structurally equivalent, depending on the effective stiffness of the spring and beam element. A cantilever is a rigid structural element that extends horizontally and is unsupported at one end. Typically it extends from a flat vertical surface such as a wall, to which it must be firmly attached. Like ...

  9. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Fig. 1: Critical stress vs slenderness ratio for steel, for E = 200 GPa, yield strength = 240 MPa.. Euler's critical load or Euler's buckling load is the compressive load at which a slender column will suddenly bend or buckle.