enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Self-supervised learning - Wikipedia

    en.wikipedia.org/wiki/Self-supervised_learning

    The Yarowsky algorithm is an example of self-supervised learning in natural language processing. From a small number of labeled examples, it learns to predict which word sense of a polysemous word is being used at a given point in text. DirectPred is a NCSSL that directly sets the predictor weights instead of learning it via typical gradient ...

  3. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.

  4. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/.../Automatic_Clustering_Algorithms

    The Automatic Local Density Clustering Algorithm (ALDC) is an example of the new research focused on developing automatic density-based clustering. ALDC works out local density and distance deviation of every point, thus expanding the difference between the potential cluster center and other points.

  5. Self-modifying code - Wikipedia

    en.wikipedia.org/wiki/Self-modifying_code

    For example, a one-instruction set computer (OISC) machine that uses only the subtract-and-branch-if-negative "instruction" cannot do an indirect copy (something like the equivalent of "*a = **b" in the C language) without using self-modifying code. Booting. Early microcomputers often used self-modifying code in their bootloaders.

  6. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Self-learning in neural networks was introduced in 1982 along with a neural network capable of self-learning named crossbar adaptive array (CAA). [139] It is a system with only one input, situation s, and only one output, action (or behavior) a. It has neither external advice input nor external reinforcement input from the environment.

  7. Online machine learning - Wikipedia

    en.wikipedia.org/wiki/Online_machine_learning

    Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is ...

  8. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    A self-organizing map (SOM) or self-organizing feature map (SOFM) is an unsupervised machine learning technique used to produce a low-dimensional (typically two-dimensional) representation of a higher-dimensional data set while preserving the topological structure of the data.

  9. AdaBoost - Wikipedia

    en.wikipedia.org/wiki/AdaBoost

    Every learning algorithm tends to suit some problem types better than others, and typically has many different parameters and configurations to adjust before it achieves optimal performance on a dataset. AdaBoost (with decision trees as the weak learners) is often referred to as the best out-of-the-box classifier.