enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.

  3. Self-modifying code - Wikipedia

    en.wikipedia.org/wiki/Self-modifying_code

    Traditional machine learning systems have a fixed, pre-programmed learning algorithm to adjust their parameters. However, since the 1980s Jürgen Schmidhuber has published several self-modifying systems with the ability to change their own learning algorithm.

  4. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  5. Massive Online Analysis - Wikipedia

    en.wikipedia.org/wiki/Massive_Online_Analysis

    MOA is an open-source framework software that allows to build and run experiments of machine learning or data mining on evolving data streams. It includes a set of learners and stream generators that can be used from the graphical user interface (GUI), the command-line, and the Java API.

  6. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Self-learning in neural networks was introduced in 1982 along with a neural network capable of self-learning named crossbar adaptive array (CAA). [139] It is a system with only one input, situation s, and only one output, action (or behavior) a. It has neither external advice input nor external reinforcement input from the environment.

  7. Particle swarm optimization - Wikipedia

    en.wikipedia.org/wiki/Particle_swarm_optimization

    This school of thought merely tries to find PSO algorithms and parameters that cause good performance regardless of how the swarm behaviour can be interpreted in relation to e.g. exploration and exploitation. Such studies have led to the simplification of the PSO algorithm, see below.

  8. Online machine learning - Wikipedia

    en.wikipedia.org/wiki/Online_machine_learning

    Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is ...

  9. Error-driven learning - Wikipedia

    en.wikipedia.org/wiki/Error-driven_learning

    In reinforcement learning, error-driven learning is a method for adjusting a model's (intelligent agent's) parameters based on the difference between its output results and the ground truth. These models stand out as they depend on environmental feedback, rather than explicit labels or categories. [ 1 ]