Search results
Results from the WOW.Com Content Network
Geometric realization of a 3-dimensional abstract simplicial complex. In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family.
The order complex associated to a poset (S, ≤) has the set S as vertices, and the finite chains of (S, ≤) as faces. The poset topology associated to a poset ( S , ≤) is then the Alexandrov topology on the order complex associated to ( S , ≤).
Let be an abstract simplicial complex on a vertex set of size . The Alexander dual X ∗ {\displaystyle X^{*}} of X {\displaystyle X} is defined as the simplicial complex on V {\displaystyle V} whose faces are complements of non-faces of X {\displaystyle X} .
Let Δ be an abstract simplicial complex of dimension d − 1 with f i i-dimensional faces and f −1 = 1. These numbers are arranged into the f-vector of Δ, = (,, …,).An important special case occurs when Δ is the boundary of a d-dimensional convex polytope.
An abstract simplicial complex (ASC) is family of sets that is closed under taking subsets (the subset of a set in the family is also a set in the family). Every abstract simplicial complex has a unique geometric realization in a Euclidean space as a geometric simplicial complex (GSC), where each set with k elements in the ASC is mapped to a (k-1)-dimensional simplex in the GSC.
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Abstract simplicial complex; C. Clique complex; D ...
A simplicial 3-complex. In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory.
A natural question is if vice versa, any abstract simplicial complex corresponds to a geometric complex. In general, the geometric construction as mentioned here is not flexible enough: consider for instance an abstract simplicial complex of infinite dimension.