Search results
Results from the WOW.Com Content Network
In probability theory, Chebyshev's inequality ... A table of values for the Saw–Yang–Mo inequality for finite sample sizes (N < 100) has been determined by Konijn.
In probability theory, the multidimensional Chebyshev's inequality [1] is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.
Toggle the table of contents. Chebyshev's sum inequality. 15 languages. ... In mathematics, Chebyshev's sum inequality, named after Pafnuty Chebyshev, ...
In fact, Chebyshev's proof works so long as the variance of the average of the first n values goes to zero as n goes to infinity. [15] As an example, assume that each random variable in the series follows a Gaussian distribution (normal distribution) with mean zero, but with variance equal to 2 n / log ( n + 1 ) {\displaystyle 2n/\log(n+1 ...
Jensen's inequality; General moments about the mean; Correlated and uncorrelated random variables; Conditional expectation: law of total expectation, law of total variance; Fatou's lemma and the monotone and dominated convergence theorems; Markov's inequality and Chebyshev's inequality
Bessel's inequality; Bihari–LaSalle inequality; Bohnenblust–Hille inequality; Borell–Brascamp–Lieb inequality; Brezis–Gallouet inequality; Carleman's inequality; Chebyshev–Markov–Stieltjes inequalities; Chebyshev's sum inequality; Clarkson's inequalities; Eilenberg's inequality; Fekete–Szegő inequality; Fenchel's inequality ...
Chebyshev's theorem is any of several theorems proven by Russian mathematician Pafnuty Chebyshev. Bertrand's postulate, that for every n there is a prime between n and 2n. Chebyshev's inequality, on the range of standard deviations around the mean, in statistics; Chebyshev's sum inequality, about sums and products of decreasing sequences
The theorem refines Chebyshev's inequality by including the factor of 4/9, made possible by the condition that the distribution be unimodal. It is common, in the construction of control charts and other statistical heuristics, to set λ = 3 , corresponding to an upper probability bound of 4/81= 0.04938..., and to construct 3-sigma limits to ...