enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multidimensional parity-check code - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_parity...

    The two-dimensional parity-check code, usually called the optimal rectangular code, is the most popular form of multidimensional parity-check code. Assume that the goal is to transmit the four-digit message "1234", using a two-dimensional parity scheme. First the digits of the message are arranged in a rectangular pattern: 12 34

  3. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]

  4. EXIT chart - Wikipedia

    en.wikipedia.org/wiki/EXIT_chart

    An example EXIT chart showing two components "right" and "left" and an example decoding (blue) An extrinsic information transfer chart, commonly called an EXIT chart, is a technique to aid the construction of good iteratively-decoded error-correcting codes (in particular low-density parity-check (LDPC) codes and Turbo codes).

  5. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.

  6. Parity measurement - Wikipedia

    en.wikipedia.org/wiki/Parity_measurement

    A qubit is a two-level system, and when we measure one qubit, we can have either 1 or 0 as a result. One corresponds to odd parity, and zero corresponds to even parity. This is what a parity check is. This idea can be generalized beyond single qubits. This can be generalized beyond a single qubit and it is useful in QEC.

  7. Dual code - Wikipedia

    en.wikipedia.org/wiki/Dual_code

    Type II codes are binary self-dual codes which are doubly even. Type III codes are ternary self-dual codes. Every codeword in a Type III code has Hamming weight divisible by 3. Type IV codes are self-dual codes over F 4. These are again even. Codes of types I, II, III, or IV exist only if the length n is a multiple of 2, 8, 4, or 2 respectively.

  8. Coding theory - Wikipedia

    en.wikipedia.org/wiki/Coding_theory

    Linear block codes have the property of linearity, i.e. the sum of any two codewords is also a code word, and they are applied to the source bits in blocks, hence the name linear block codes. There are block codes that are not linear, but it is difficult to prove that a code is a good one without this property.

  9. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    The parity-check matrix of a Hamming code is constructed by listing all columns of length r that are non-zero, which means that the dual code of the Hamming code is the shortened Hadamard code, also known as a Simplex code. The parity-check matrix has the property that any two columns are pairwise linearly independent.