Search results
Results from the WOW.Com Content Network
Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (the brain and the spinal cord) and in the peripheral nervous system that do not produce electrical impulses. The neuroglia make up more than one half the volume of neural tissue in the human body. [1]
Oligodendrocytes are a type of glial cell, non-neuronal cells in the central nervous system.They arise during development from oligodendrocyte precursor cells (OPCs), [8] which can be identified by their expression of a number of antigens, including the ganglioside GD3, [9] [10] [11] the NG2 chondroitin sulfate proteoglycan, and the platelet-derived growth factor-alpha receptor subunit (PDGF ...
Schwann cells or neurolemmocytes (named after German physiologist Theodor Schwann) are the principal glia of the peripheral nervous system (PNS). Glial cells function to support neurons and in the PNS, also include satellite cells, olfactory ensheathing cells, enteric glia and glia that reside at sensory nerve endings, such as the Pacinian corpuscle.
Nervous tissue, also called neural tissue, is the main tissue component of the nervous system.The nervous system regulates and controls body functions and activity. It consists of two parts: the central nervous system (CNS) comprising the brain and spinal cord, and the peripheral nervous system (PNS) comprising the branching peripheral nerves.
Perisynaptic schwann cells (also known as Terminal schwann cells or Teloglia) are neuroglia found at the Neuromuscular junction (NMJ) with known functions in synaptic transmission, synaptogenesis, and nerve regeneration. [1] These cells share a common ancestor with both Myelinating and Non-Myelinating Schwann Cells called Neural Crest cells.
Glial fibrillary acidic protein (GFAP) is a protein that is encoded by the GFAP gene in humans. [5] It is a type III intermediate filament (IF) protein that is expressed by numerous cell types of the central nervous system (CNS), including astrocytes [ 6 ] and ependymal cells during development. [ 7 ]
The various waves of OPCs could myelinate distinct regions of the brain, which suggests that distinct functional subpopulations of OPCs perform different functions. [ 37 ] Differentiation of OPCs into oligodendrocytes involves massive reorganization of cytoskeleton proteins ultimately resulting in increased cell branching and lamella extension ...
In some cases, microglia can also be activated by IFN-γ to present antigens, but do not function as effectively as if they had undergone uptake of MHC class I/II proteins. During inflammation , T-cells cross the blood–brain barrier thanks to specialized surface markers and then directly bind to microglia in order to receive antigens .