Search results
Results from the WOW.Com Content Network
The term Chebyshev's inequality may also refer to Markov's inequality, especially in the context of analysis. They are closely related, and some authors refer to Markov's inequality as "Chebyshev's First Inequality," and the similar one referred to on this page as "Chebyshev's Second Inequality."
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...
In mathematical analysis, the Chebyshev–Markov–Stieltjes inequalities are inequalities related to the problem of moments that were formulated in the 1880s by Pafnuty Chebyshev and proved independently by Andrey Markov and (somewhat later) by Thomas Jan Stieltjes. [1]
In fact, Chebyshev's proof works so long as the variance of the average of the first n values goes to zero as n goes to infinity. [15] As an example, assume that each random variable in the series follows a Gaussian distribution (normal distribution) with mean zero, but with variance equal to 2 n / log ( n + 1 ) {\displaystyle 2n/\log(n+1 ...
In probability theory, the multidimensional Chebyshev's inequality [1] is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.
Askey–Gasper inequality; Babenko–Beckner inequality; Bernoulli's inequality; Bernstein's inequality (mathematical analysis) Bessel's inequality; Bihari–LaSalle inequality; Bohnenblust–Hille inequality; Borell–Brascamp–Lieb inequality; Brezis–Gallouet inequality; Carleman's inequality; Chebyshev–Markov–Stieltjes inequalities ...
Consider the sum = = = (). The two sequences are non-increasing, therefore a j − a k and b j − b k have the same sign for any j, k.Hence S ≥ 0.. Opening the brackets, we deduce:
the most common choice for function h being either the absolute value (in which case it is known as Markov inequality), or the quadratic function (respectively Chebyshev's inequality). Another useful result is the continuous mapping theorem : if T n is consistent for θ and g (·) is a real-valued function continuous at point θ , then g ( T n ...