enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The term Chebyshev's inequality may also refer to Markov's inequality, especially in the context of analysis. They are closely related, and some authors refer to Markov's inequality as "Chebyshev's First Inequality," and the similar one referred to on this page as "Chebyshev's Second Inequality."

  3. Coupon collector's problem - Wikipedia

    en.wikipedia.org/wiki/Coupon_collector's_problem

    In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...

  4. Chebyshev–Markov–Stieltjes inequalities - Wikipedia

    en.wikipedia.org/wiki/Chebyshev–Markov...

    In mathematical analysis, the Chebyshev–Markov–Stieltjes inequalities are inequalities related to the problem of moments that were formulated in the 1880s by Pafnuty Chebyshev and proved independently by Andrey Markov and (somewhat later) by Thomas Jan Stieltjes. [1]

  5. Chebyshev's sum inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_sum_inequality

    Download as PDF; Printable version; ... Chebyshev's sum inequality, named after Pafnuty Chebyshev, ... Notes This page was ...

  6. Multidimensional Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_Chebyshev...

    In probability theory, the multidimensional Chebyshev's inequality [1] is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.

  7. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    In fact, Chebyshev's proof works so long as the variance of the average of the first n values goes to zero as n goes to infinity. [15] As an example, assume that each random variable in the series follows a Gaussian distribution (normal distribution) with mean zero, but with variance equal to 2 n / log ⁡ ( n + 1 ) {\displaystyle 2n/\log(n+1 ...

  8. Consistent estimator - Wikipedia

    en.wikipedia.org/wiki/Consistent_estimator

    the most common choice for function h being either the absolute value (in which case it is known as Markov inequality), or the quadratic function (respectively Chebyshev's inequality). Another useful result is the continuous mapping theorem : if T n is consistent for θ and g (·) is a real-valued function continuous at point θ , then g ( T n ...

  9. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. [1] It is often said to have begun with Peter Gustav Lejeune Dirichlet 's 1837 introduction of Dirichlet L -functions to give the first proof of Dirichlet's theorem on arithmetic progressions .