enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. HAZMAT Class 6 Toxic and infectious substances - Wikipedia

    en.wikipedia.org/wiki/HAZMAT_Class_6_Toxic_and...

    Class 6 Packing Groups and Hazard Zones The packing group of Division 6.1 materials shall be as assigned in Column 5 of the 49CFR 172.101 Table. When the 49CFR 172.101 Table provides more than one packing group or hazard zone for a hazardous material, the packing group and hazard zone shall be determined by applying the following criteria: 1.

  3. Dangerous goods - Wikipedia

    en.wikipedia.org/wiki/Dangerous_goods

    Class 5.2: Organic Peroxide Oxidizing Agent 5.2 Organic peroxides, either in liquid or solid form ( benzoyl peroxides , cumene hydroperoxide ). Class 6: Toxic and Infectious Substances

  4. Desargues's theorem - Wikipedia

    en.wikipedia.org/wiki/Desargues's_theorem

    The ten lines involved in Desargues's theorem (six sides of triangles, the three lines Aa, Bb and Cc, and the axis of perspectivity) and the ten points involved (the six vertices, the three points of intersection on the axis of perspectivity, and the center of perspectivity) are so arranged that each of the ten lines passes through three of the ...

  5. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...

  6. Modern triangle geometry - Wikipedia

    en.wikipedia.org/wiki/Modern_triangle_geometry

    Here is a definition of triangle geometry from 1887: "Being given a point M in the plane of the triangle, we can always find, in an infinity of manners, a second point M' that corresponds to the first one according to an imagined geometrical law; these two points have between them geometrical relations whose simplicity depends on the more or ...

  7. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

  8. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]

  9. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.