enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bright-field microscopy - Wikipedia

    en.wikipedia.org/wiki/Bright-field_microscopy

    Bright-field microscopy (BF) is the simplest of all the optical microscopy illumination techniques. Sample illumination is transmitted (i.e., illuminated from below and observed from above) white light , and contrast in the sample is caused by attenuation of the transmitted light in dense areas of the sample.

  3. Köhler illumination - Wikipedia

    en.wikipedia.org/wiki/Köhler_illumination

    Köhler illumination is a method of specimen illumination used for transmitted and reflected light (trans- and epi-illuminated) optical microscopy.Köhler illumination acts to generate an even illumination of the sample and ensures that an image of the illumination source (for example a halogen lamp filament) is not visible in the resulting image.

  4. Optical microscope - Wikipedia

    en.wikipedia.org/wiki/Optical_microscope

    The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.

  5. Phase-contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_microscopy

    The same cells imaged with traditional bright-field microscopy (left), and with phase-contrast microscopy (right) Phase-contrast microscopy is particularly important in biology. It reveals many cellular structures that are invisible with a bright-field microscope, as exemplified in the figure.

  6. Contrast transfer function - Wikipedia

    en.wikipedia.org/wiki/Contrast_transfer_function

    TEM Ray Diagram with Phase Contrast Transfer Function. Contrast transfer theory provides a quantitative method to translate the exit wavefunction to a final image. Part of the analysis is based on Fourier transforms of the electron beam wavefunction. When an electron wavefunction passes through a lens, the wavefunction goes through a Fourier ...

  7. 4D scanning transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/4D_scanning_transmission...

    This eliminates a typical weaknesses in conventional STEM operation as STEM bright-field and dark-field detectors are placed at fixed angles and cannot be changed during imaging. [27] With a 4D dataset bright/dark-field images can be obtained by integrating diffraction intensities from diffracted and transmitted beams respectively. [25]

  8. Microscopy - Wikipedia

    en.wikipedia.org/wiki/Microscopy

    Antonie van Leeuwenhoek (1632–1723). The field of microscopy (optical microscopy) dates back to at least the 17th-century.Earlier microscopes, single lens magnifying glasses with limited magnification, date at least as far back as the wide spread use of lenses in eyeglasses in the 13th century [2] but more advanced compound microscopes first appeared in Europe around 1620 [3] [4] The ...

  9. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    A ray of light being refracted through a glass slab Refraction of a light ray. In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refracted, when entering a ...