Search results
Results from the WOW.Com Content Network
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).
While this formulation allows also fractional variable values, in this special case, the LP always has an optimal solution where the variables take integer values. This is because the constraint matrix of the fractional LP is totally unimodular – it satisfies the four conditions of Hoffman and Gale.
The use of randomization to improve the time bounds for low dimensional linear programming and related problems was pioneered by Clarkson and by Dyer & Frieze (1989). The definition of LP-type problems in terms of functions satisfying the axioms of locality and monotonicity is from Sharir & Welzl (1992) , but other authors in the same timeframe ...
There is a close connection between linear programming problems, eigenequations, and von Neumann's general equilibrium model. The solution to a linear programming problem can be regarded as a generalized eigenvector. The eigenequations of a square matrix are as follows:
In mathematical optimization, the fundamental theorem of linear programming states, in a weak formulation, that the maxima and minima of a linear function over a convex polygonal region occur at the region's corners.
4 Mathematical formulation of the problem. 5 Solution. Toggle Solution subsection. 5.1 Phase 1. ... The transshipment problem is a unique Linear Programming Problem ...
It is an optimization problem in mathematics that arises from applications in industry. In terms of computational complexity, the problem is an NP-hard problem reducible to the knapsack problem. The problem can be formulated as an integer linear programming problem.
In the theory of linear programming, a basic feasible solution (BFS) is a solution with a minimal set of non-zero variables. Geometrically, each BFS corresponds to a vertex of the polyhedron of feasible solutions. If there exists an optimal solution, then there exists an optimal BFS.