Search results
Results from the WOW.Com Content Network
For example, the set of real numbers consisting of 0, 1, and all numbers in between is an interval, denoted [0, 1] and called the unit interval; the set of all positive real numbers is an interval, denoted (0, ∞); the set of all real numbers is an interval, denoted (−∞, ∞); and any single real number a is an interval, denoted [a, a].
The unit interval is a subset of the real numbers. However, it has the same size as the whole set: the cardinality of the continuum . Since the real numbers can be used to represent points along an infinitely long line , this implies that a line segment of length 1, which is a part of that line, has the same number of points as the whole line.
In the other direction, the binary expansions of numbers in the half-open interval [,), viewed as sets of positions where the expansion is one, almost give a one-to-one mapping from subsets of a countable set (the set of positions in the expansions) to real numbers, but it fails to be one-to-one for numbers with terminating binary expansions ...
So, given the fact that an interval number is a real closed interval and a complex number is an ordered pair of real numbers, there is no reason to limit the application of interval arithmetic to the measure of uncertainties in computations with real numbers. [3] Interval arithmetic can thus be extended, via complex interval numbers, to ...
The long real line pastes together ℵ 1 * + ℵ 1 copies of the real line plus a single point (here ℵ 1 * denotes the reversed ordering of ℵ 1) to create an ordered set that is "locally" identical to the real numbers, but somehow longer; for instance, there is an order-preserving embedding of ℵ 1 in the long real line but not in the real ...
If [,] > is an interval, then ([,]) = (/) = determines a measure on certain subsets of >, corresponding to the pullback of the usual Lebesgue measure on the real numbers under the logarithm: it is the length on the logarithmic scale.
The real numbers can be defined synthetically as an ordered field satisfying some version of the completeness axiom.Different versions of this axiom are all equivalent in the sense that any ordered field that satisfies one form of completeness satisfies all of them, apart from Cauchy completeness and nested intervals theorem, which are strictly weaker in that there are non Archimedean fields ...
4 members of a sequence of nested intervals. In mathematics, a sequence of nested intervals can be intuitively understood as an ordered collection of intervals on the real number line with natural numbers =,,, … as an index. In order for a sequence of intervals to be considered nested intervals, two conditions have to be met: