enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    where H 0 is the applied magnetic field due only to the free currents and H d is the demagnetizing field due only to the bound currents. The magnetic H-field, therefore, re-factors the bound current in terms of "magnetic charges". The H field lines loop only around "free current" and, unlike the magnetic B field, begins and ends near magnetic ...

  3. Electromagnetic coil - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_coil

    Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely, an external time-varying magnetic field through the interior of the coil generates an EMF in the conductor. A current through any conductor creates a circular magnetic field around the conductor due to Ampere's law. [3]

  4. Oersted's law - Wikipedia

    en.wikipedia.org/wiki/Oersted's_law

    The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism, Ørsted's law, also spelled Oersted's law, is the physical law stating that an electric current induces a magnetic field. [2]

  5. Electromagnet - Wikipedia

    en.wikipedia.org/wiki/Electromagnet

    The magnetic field lines of a current-carrying loop of wire pass through the center of the loop, concentrating the field there The magnetic field generated by passing a current through a coil. An electric current flowing in a wire creates a magnetic field around the wire, due to Ampere's law (see drawing of wire with magnetic field).

  6. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).

  7. Introduction to electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Introduction_to...

    A current-carrying coil of wire induces a magnetic field according to Ampère's circuital law. The greater the current I , the greater the energy stored in the magnetic field and the lower the inductance which is defined L = Φ B / I {\textstyle L=\Phi _{B}/I} where Φ B {\textstyle \Phi _{B}} is the magnetic flux produced by the coil of wire.

  8. Biot–Savart law - Wikipedia

    en.wikipedia.org/wiki/Biot–Savart_law

    The application of this law implicitly relies on the superposition principle for magnetic fields, i.e. the fact that the magnetic field is a vector sum of the field created by each infinitesimal section of the wire individually. [6] For example, consider the magnetic field of a loop of radius carrying a current .

  9. Ampère's circuital law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_circuital_law

    [6] [7] He investigated and discovered the rules which govern the field around a straight current-carrying wire: [8] The magnetic field lines encircle the current-carrying wire. The magnetic field lines lie in a plane perpendicular to the wire. If the direction of the current is reversed, the direction of the magnetic field reverses.