Search results
Results from the WOW.Com Content Network
where H 0 is the applied magnetic field due only to the free currents and H d is the demagnetizing field due only to the bound currents. The magnetic H-field, therefore, re-factors the bound current in terms of "magnetic charges". The H field lines loop only around "free current" and, unlike the magnetic B field, begins and ends near magnetic ...
Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely, an external time-varying magnetic field through the interior of the coil generates an EMF in the conductor. A current through any conductor creates a circular magnetic field around the conductor due to Ampere's law. [3]
The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism, Ørsted's law, also spelled Oersted's law, is the physical law stating that an electric current induces a magnetic field. [2]
The magnetic field lines of a current-carrying loop of wire pass through the center of the loop, concentrating the field there The magnetic field generated by passing a current through a coil. An electric current flowing in a wire creates a magnetic field around the wire, due to Ampere's law (see drawing of wire with magnetic field).
Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).
A current-carrying coil of wire induces a magnetic field according to Ampère's circuital law. The greater the current I , the greater the energy stored in the magnetic field and the lower the inductance which is defined L = Φ B / I {\textstyle L=\Phi _{B}/I} where Φ B {\textstyle \Phi _{B}} is the magnetic flux produced by the coil of wire.
The application of this law implicitly relies on the superposition principle for magnetic fields, i.e. the fact that the magnetic field is a vector sum of the field created by each infinitesimal section of the wire individually. [6] For example, consider the magnetic field of a loop of radius carrying a current .
[6] [7] He investigated and discovered the rules which govern the field around a straight current-carrying wire: [8] The magnetic field lines encircle the current-carrying wire. The magnetic field lines lie in a plane perpendicular to the wire. If the direction of the current is reversed, the direction of the magnetic field reverses.