Search results
Results from the WOW.Com Content Network
The theorems of Alhacen, Khayyam and al-Tūsī on quadrilaterals, including the Ibn al-Haytham–Lambert quadrilateral and Khayyam–Saccheri quadrilateral, were the first theorems on hyperbolic geometry. Their works on hyperbolic geometry had a considerable influence on its development among later European geometers, including Witelo ...
Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]
In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices . Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane.
In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. [1] It can also be related to the relativistic velocity addition formula. [2] [3]
In the Beltrami-Klein model of the hyperbolic geometry: two ultraparallel lines correspond to two non-intersecting chords. The poles of these two lines are the respective intersections of the tangent lines to the boundary circle at the endpoints of the chords. Lines perpendicular to line l are modeled by chords whose extension passes through ...
A model geometry is a simply connected smooth manifold X together with a transitive action of a Lie group G on X with compact stabilizers. A model geometry is called maximal if G is maximal among groups acting smoothly and transitively on X with compact stabilizers. Sometimes this condition is included in the definition of a model geometry.
In mathematics, Mostow's rigidity theorem, or strong rigidity theorem, or Mostow–Prasad rigidity theorem, essentially states that the geometry of a complete, finite-volume hyperbolic manifold of dimension greater than two is determined by the fundamental group and hence unique.
Hyperbolic 3-manifold; Hyperbolic coordinates; Hyperbolic Dehn surgery; Hyperbolic functions; Hyperbolic group; Hyperbolic law of cosines; Hyperbolic manifold; Hyperbolic metric space; Hyperbolic motion; Hyperbolic space; Hyperbolic tree; Hyperbolic volume; Hyperbolization theorem; Hyperboloid model; Hypercycle (geometry) HyperRogue