Search results
Results from the WOW.Com Content Network
As the logistic distribution, which can be solved analytically, is similar to the normal distribution, it can be used instead. The blue picture illustrates an example of fitting the logistic distribution to ranked October rainfalls—that are almost normally distributed—and it shows the 90% confidence belt based on the binomial distribution.
For other families of distributions that have also been called generalized logistic distributions, see the shifted log-logistic distribution, which is a generalization of the log-logistic distribution; and the metalog ("meta-logistic") distribution, which is highly shape-and-bounds flexible and can be fit to data with linear least squares.
The generalized logistic function or curve is an extension of the logistic or sigmoid functions. Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards, who proposed the general form for the family of models in 1959.
The shifted log-logistic distribution is a probability distribution also known as the generalized log-logistic or the three-parameter log-logistic distribution. [ 1 ] [ 2 ] It has also been called the generalized logistic distribution, [ 3 ] but this conflicts with other uses of the term: see generalized logistic distribution .
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: = = = = (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.
Multinomial logistic regression is used when the dependent variable in question is nominal (equivalently categorical, meaning that it falls into any one of a set of categories that cannot be ordered in any meaningful way) and for which there are more than two categories.
The Kaniadakis Logistic distribution (also known as κ-Logisticdistribution) is a generalized version of the Logistic distribution associated with the Kaniadakis statistics. It is one example of a Kaniadakis distribution .