Search results
Results from the WOW.Com Content Network
The general formula for the escape velocity of an object at a distance r from the center of a planet with mass M is [12] = =, where G is the gravitational constant and g is the gravitational acceleration. The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object.
A metric space defined over a set of points in terms of distances in a graph defined over the set is called a graph metric. The vertex set (of an undirected graph) and the distance function form a metric space, if and only if the graph is connected. The eccentricity ϵ(v) of a vertex v is the greatest distance between v and any other vertex; in ...
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
Where the terminology may be ambiguous, the graphs in which non-edges must be a non-unit distance apart may be called strict unit distance graphs [3] or faithful unit distance graphs. [2] The subgraphs of unit distance graphs are equivalently the graphs that can be drawn in the plane using only one edge length. [ 4 ]
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
This graph is distance regular with intersection array {7,4,1;1,2,7} and automorphism group PGL(2,7). Some first examples of distance-regular graphs include: The complete graphs. The cycle graphs. The odd graphs. The Moore graphs. The collinearity graph of a regular near polygon. The Wells graph and the Sylvester graph.
A time–distance diagram is a chart with two axes: one for time, the other for location. The units on either axis depend on the type of project: time can be expressed in minutes (for overnight construction of railroad modification projects such as the installation of switches) or years (for large construction projects); the location can be (kilo)meters, or other distinct units (such as ...
This is due to the shape of the graph of the DO over time. The biological oxygen demand (BOD) and dissolved oxygen (DO) curves in a river flowing right reaching equilibrium after a continuous input of high BOD influent is added into the river at x = 15 m and t = 0 s.