enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK. Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  3. Nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance

    Many isotopes of chemical elements can be used for NMR analysis. [35] Commonly used nuclei: 1 H, the most commonly used spin-⁠ 1 / 2 ⁠ nucleus in NMR investigations, has been studied using many forms of NMR. Hydrogen is highly abundant, especially in biological systems. It is the nucleus providing the strongest NMR signal (apart from 3 H

  4. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    In addition to chemical shift, NMR spectra allow structural assignments by virtue of spin–spin coupling (and integrated intensities). Because nuclei themselves possess a small magnetic field, they influence each other, changing the energy and hence frequency of nearby nuclei as they resonate—this is known as spin–spin coupling .

  5. Solid-state nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Solid-state_nuclear...

    Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...

  6. Paramagnetic nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Paramagnetic_nuclear...

    The difference between the chemical shift of a given nucleus in a diamagnetic vs. a paramagnetic environment is called the hyperfine shift.In solution the isotropic hyperfine chemical shift for nickelocene is −255 ppm, which is the difference between the observed shift (ca. −260 ppm) and the shift observed for a diamagnetic analogue ferrocene (ca. 5 ppm).

  7. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not zero, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  8. Instrumental chemistry - Wikipedia

    en.wikipedia.org/wiki/Instrumental_chemistry

    Electroanalytical methods measure the electric potential in volts and/or the electric current in amps in an electrochemical cell containing the analyte. [ 1 ] [ 2 ] These methods can be categorized according to which aspects of the cell are controlled and which are measured.

  9. Nuclear magnetic resonance crystallography - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    The spin interaction that is usually employed for structural analyses via solid state NMR spectroscopy is the magnetic dipolar interaction. [8] Additional knowledge about other interactions within the studied system like the chemical shift or the electric quadrupole interaction can be helpful as well, and in some cases solely the chemical shift has been employed as e.g. for zeolites. [9]