enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Comparison of linear algebra libraries - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_linear...

    Includes some support for linear algebra. IMSL Numerical Libraries: Rogue Wave Software: C, Java, C#, Fortran, Python 1970 many components Non-free Proprietary General purpose numerical analysis library. LAPACK [7] [8] Fortran 1992 3.12.0 / 11.2023 Free 3-clause BSD: Numerical linear algebra library with long history librsb: Michele Martone C ...

  3. Comparison of numerical-analysis software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_numerical...

    SciPy: scipy.org community Python 2001 1.5.3, 17 October 2020 Free BSD: Adds numerical programming abilities to Python language. Related to NumPy, and thus connected to prior Numeric and Numarray packages for Python

  4. SciPy - Wikipedia

    en.wikipedia.org/wiki/SciPy

    SciPy (pronounced / ˈ s aɪ p aɪ / "sigh pie" [3]) is a free and open-source Python library used for scientific computing and technical computing. [4]SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.

  5. List of numerical libraries - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_libraries

    JAMA, a numerical linear algebra toolkit for the Java programming language. No active development has taken place since 2005, but it still one of the more popular linear algebra packages in Java. Jblas: Linear Algebra for Java, a linear algebra library which is an easy to use wrapper around BLAS and LAPACK.

  6. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  7. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    Variants of this algorithm are available in MATLAB as the routine lsqnonneg [8] [1] and in SciPy as optimize.nnls. [9] Many improved algorithms have been suggested since 1974. [1] Fast NNLS (FNNLS) is an optimized version of the Lawson–Hanson algorithm. [2]

  8. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    The Python package NumPy provides a pseudoinverse calculation through its functions matrix.I and linalg.pinv; its pinv uses the SVD-based algorithm. SciPy adds a function scipy.linalg.pinv that uses a least-squares solver. The MASS package for R provides a calculation of the Moore–Penrose inverse through the ginv function. [24]

  9. Sparse matrix - Wikipedia

    en.wikipedia.org/wiki/Sparse_matrix

    SciPy provides support for several sparse matrix formats, linear algebra, and solvers. ALGLIB is a C++ and C# library with sparse linear algebra support; ARPACK Fortran 77 library for sparse matrix diagonalization and manipulation, using the Arnoldi algorithm; SLEPc Library for solution of large scale linear systems and sparse matrices