enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvector centrality - Wikipedia

    en.wikipedia.org/wiki/Eigenvector_centrality

    In graph theory, eigenvector centrality (also called eigencentrality or prestige score [1]) is a measure of the influence of a node in a connected network.Relative scores are assigned to all nodes in the network based on the concept that connections to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes.

  3. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    #!/usr/bin/env python3 import numpy as np def power_iteration (A, num_iterations: int): # Ideally choose a random vector # To decrease the chance that our vector # Is orthogonal to the eigenvector b_k = np. random. rand (A. shape [1]) for _ in range (num_iterations): # calculate the matrix-by-vector product Ab b_k1 = np. dot (A, b_k) # calculate the norm b_k1_norm = np. linalg. norm (b_k1 ...

  4. Katz centrality - Wikipedia

    en.wikipedia.org/wiki/Katz_centrality

    A simple social network: the nodes represent people or actors and the edges between nodes represent some relationship between actors. Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under consideration through these immediate neighbors.

  5. Inverse iteration - Wikipedia

    en.wikipedia.org/wiki/Inverse_iteration

    Since eigenvectors are defined up to multiplication by constant, the choice of can be arbitrary in theory; practical aspects of the choice of are discussed below. At every iteration, the vector b k {\displaystyle b_{k}} is multiplied by the matrix ( A − μ I ) − 1 {\displaystyle (A-\mu I)^{-1}} and normalized.

  6. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.

  7. Rayleigh quotient - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_quotient

    As stated in the introduction, for any vector x, one has (,) [,], where , are respectively the smallest and largest eigenvalues of .This is immediate after observing that the Rayleigh quotient is a weighted average of eigenvalues of M: (,) = = = = where (,) is the -th eigenpair after orthonormalization and = is the th coordinate of x in the eigenbasis.

  8. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  9. Lanczos algorithm - Wikipedia

    en.wikipedia.org/wiki/Lanczos_algorithm

    The Lanczos algorithm is most often brought up in the context of finding the eigenvalues and eigenvectors of a matrix, but whereas an ordinary diagonalization of a matrix would make eigenvectors and eigenvalues apparent from inspection, the same is not true for the tridiagonalization performed by the Lanczos algorithm; nontrivial additional steps are needed to compute even a single eigenvalue ...