Search results
Results from the WOW.Com Content Network
Diagram of a MMRTG. The multi-mission radioisotope thermoelectric generator (MMRTG) is a type of radioisotope thermoelectric generator (RTG) developed for NASA space missions [1] such as the Mars Science Laboratory (MSL), under the jurisdiction of the United States Department of Energy's Office of Space and Defense Power Systems within the Office of Nuclear Energy.
SiGe has been used as a material in RTGs since 1976. Each mission that has used RTG technology involves exploration of far-reaching regions of the solar system. The most recent mission, New Horizons (2005), was originally set for a 3-year exploration, but was extended to 17 years.
Diagram of an RTG used on the Cassini probe [1] Diagram of a stack of general-purpose heat source modules as used in RTGs Image of a plutonium RTG pellet glowing red hot.. GPHS-RTG or general-purpose heat source — radioisotope thermoelectric generator, is a specific design of the radioisotope thermoelectric generator (RTG) used on US space missions.
Diagram of an RTG used on the Cassini probe. A radioisotope thermoelectric generator (RTG, RITEG), sometimes referred to as a radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect.
The SNAP program developed as a result of Project Feedback, a Rand Corporation study of reconnaissance satellites completed in 1954. [1] As some of the proposed satellites had high power demands, some as high as a few kilowatts, the U.S. Atomic Energy Commission (AEC) requested a series of nuclear power-plant studies from industry in 1951.
Diagram of a radioisotope heater unit. A radioisotope heater unit (RHU) is a small device that provides heat through radioactive decay. [1] They are similar to tiny radioisotope thermoelectric generators (RTG) and normally provide about one watt of heat each, derived from the decay of a few grams of plutonium-238—although other radioactive isotopes could be used.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The neutrons produced by a research reactor are used for neutron scattering, non-destructive testing, analysis and testing of materials, production of radioisotopes, research and public outreach and education. Research reactors that produce radioisotopes for medical or industrial use are sometimes called isotope reactors.