Search results
Results from the WOW.Com Content Network
Naturally occurring ruthenium (44 Ru) is composed of seven stable isotopes (of which two may in the future be found radioactive). Additionally, 27 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106 Ru, with a half-life of 373.59 days; 103 Ru, with a half-life of 39.26 days and 97 Ru, with a half-life of 2 ...
Ruthenium is a chemical element; it has symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is unreactive to most chemicals.
Because of their long half-lives, such isotopes are still found on Earth in various quantities, and together with the stable isotopes they are called primordial isotopes. All the primordial isotopes are given in order of their decreasing abundance on Earth. [c] For a list of primordial nuclides in order of half-life, see List of nuclides.
No isotopes known, Isobox does not exist: local input, per Infobox. For example: Transclusion of the isobox is suppressed (no redlink), E119: |theoretical isotopes comment=Experiments and theoretical calculations Applied: E119 and up: have no Isobox, so no isotopes lists is shown—at all. Instead, the parametertext is shown as present.
Pages in category "Isotopes of ruthenium" The following 55 pages are in this category, out of 55 total. This list may not reflect recent changes. ...
Isotopes of ruthenium (55 P) Pages in category "Ruthenium" The following 7 pages are in this category, out of 7 total. This list may not reflect recent changes. ...
The abundance of the chemical elements is a measure of the occurrences of the chemical elements relative to all other elements in a given environment. Abundance is measured in one of three ways: by mass fraction (in commercial contexts often called weight fraction), by mole fraction (fraction of atoms by numerical count, or sometimes fraction of molecules in gases), or by volume fraction.
Abundance (atom fraction) of the chemical elements in Earth's upper continental crust as a function of atomic number; [5] siderophiles shown in yellow. Graphs of abundance against atomic number can reveal patterns relating abundance to stellar nucleosynthesis and geochemistry.