Search results
Results from the WOW.Com Content Network
The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix. It is a specialization of the Hough transform.
scikit-image (formerly scikits.image) is an open-source image processing library for the Python programming language. [2] It includes algorithms for segmentation , geometric transformations, color space manipulation, analysis, filtering, morphology, feature detection , and more. [ 3 ]
The Hough transform is a feature extraction technique used in image analysis, computer vision, pattern recognition, and digital image processing. [1] [2] The purpose of the technique is to find imperfect instances of objects within a certain class of shapes by a voting procedure.
The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to find out its location and orientation in the image. This modification enables the Hough transform to be used to detect an arbitrary object described with its model.
The Hessian affine region detector is a feature detector used in the fields of computer vision and image analysis.Like other feature detectors, the Hessian affine detector is typically used as a preprocessing step to algorithms that rely on identifiable, characteristic interest points.
Free MIT: MAC OS X, with Python & Go packages and a JavaScript port ... Circle recognition Arc recognition Orthogonal line detection Corner detection
Just Words. If you love Scrabble, you'll love the wonderful word game fun of Just Words. Play Just Words free online! By Masque Publishing
Feature detection includes methods for computing abstractions of image information and making local decisions at every image point whether there is an image feature of a given type at that point or not. The resulting features will be subsets of the image domain, often in the form of isolated points, continuous curves or connected regions.