enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circle Hough Transform - Wikipedia

    en.wikipedia.org/wiki/Circle_Hough_Transform

    The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix .

  3. Hough transform - Wikipedia

    en.wikipedia.org/wiki/Hough_transform

    Hough transform based on wavelet filtering, to detect a circle of a particular radius. (Matlab code.) Hough transform for lines using MATLAB Archived 2014-04-13 at the Wayback Machine; Hough transform for circles in MATLAB; KHT – C++ source code. 3DKHT – C++ source code and datasets. Straight line Hough transform in Python

  4. Smallest-circle problem - Wikipedia

    en.wikipedia.org/wiki/Smallest-circle_problem

    The algorithm selects one point p randomly and uniformly from P, and recursively finds the minimal circle containing P – {p}, i.e. all of the other points in P except p. If the returned circle also encloses p, it is the minimal circle for the whole of P and is returned. Otherwise, point p must lie on the boundary of the result circle.

  5. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    OpenCV's Cascade Classifiers support LBPs as of version 2. VLFeat , an open source computer vision library in C (with bindings to multiple languages including MATLAB) has an implementation . LBPLibrary is a collection of eleven Local Binary Patterns (LBP) algorithms developed for background subtraction problem.

  6. OpenCV - Wikipedia

    en.wikipedia.org/wiki/OpenCV

    OpenCV (Open Source Computer Vision Library) is a library of programming functions mainly for real-time computer vision. [2] Originally developed by Intel, it was later supported by Willow Garage, then Itseez (which was later acquired by Intel [3]).

  7. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  8. Hessian affine region detector - Wikipedia

    en.wikipedia.org/wiki/Hessian_Affine_region_detector

    The Hessian affine region detector is a feature detector used in the fields of computer vision and image analysis.Like other feature detectors, the Hessian affine detector is typically used as a preprocessing step to algorithms that rely on identifiable, characteristic interest points.

  9. Bundle adjustment - Wikipedia

    en.wikipedia.org/wiki/Bundle_adjustment

    A sparse matrix obtained when solving a modestly sized bundle adjustment problem. This is the arrowhead sparsity pattern of a 992×992 normal-equation (i.e. approximate Hessian) matrix.