Search results
Results from the WOW.Com Content Network
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.
An "encoder-only" Transformer applies the encoder to map an input text into a sequence of vectors that represent the input text. This is usually used for text embedding and representation learning for downstream applications. BERT is encoder-only. They are less often used currently, as they were found to be not significantly better than ...
Generative AI features have been integrated into a variety of existing commercially available products such as Microsoft Office (Microsoft Copilot), [85] Google Photos, [86] and the Adobe Suite (Adobe Firefly). [87] Many generative AI models are also available as open-source software, including Stable Diffusion and the LLaMA [88] language model.
Flux (also known as FLUX.1) is a text-to-image model developed by Black Forest Labs, based in Freiburg im Breisgau, Germany. Black Forest Labs were founded by former employees of Stability AI. As with other text-to-image models, Flux generates images from natural language descriptions, called prompts.
Microsoft says AI will change in some big ways in 2025. ... AI will also become increasingly multimodal over the next year, helping it to do things like interact with text, visual, and audio ...
Meta AI (formerly Facebook) also has a generative transformer-based foundational large language model, known as LLaMA. [48] Foundational GPTs can also employ modalities other than text, for input and/or output. GPT-4 is a multi-modal LLM that is capable of processing text and image input (though its output is limited to text). [49]
A language model is a model of natural language. [1] Language models are useful for a variety of tasks, including speech recognition, [2] machine translation, [3] natural language generation (generating more human-like text), optical character recognition, route optimization, [4] handwriting recognition, [5] grammar induction, [6] and information retrieval.
High-level schematic diagram of BERT. It takes in a text, tokenizes it into a sequence of tokens, add in optional special tokens, and apply a Transformer encoder. The hidden states of the last layer can then be used as contextual word embeddings. BERT is an "encoder-only" transformer architecture. At a high level, BERT consists of 4 modules: