Search results
Results from the WOW.Com Content Network
If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]
By contrast, a breadth-first search will never reach the grandchildren, as it seeks to exhaust the children first. A more sophisticated analysis of running time can be given via infinite ordinal numbers ; for example, the breadth-first search of the depth 2 tree above will take ω ·2 steps: ω for the first level, and then another ω for the ...
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...
Beam search uses breadth-first search to build its search tree. At each level of the tree, it generates all successors of the states at the current level, sorting them in increasing order of heuristic cost. [2] However, it only stores a predetermined number, , of best states at each level (called the beam width). Only those states are expanded ...
Construct the shortest-path tree using the edges between each node and its parent. The above algorithm guarantees the existence of shortest-path trees. Like minimum spanning trees, shortest-path trees in general are not unique. In graphs for which all edge weights are equal, shortest path trees coincide with breadth-first search trees.