Search results
Results from the WOW.Com Content Network
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
Unlike double-stranded DNA, RNA is usually a single-stranded molecule (ssRNA) [4] in many of its biological roles and consists of much shorter chains of nucleotides. [5] However, double-stranded RNA (dsRNA) can form and (moreover) a single RNA molecule can, by complementary base pairing, form intrastrand double helixes, as in tRNA.
The tertiary arrangement of DNA's double helix in space includes B-DNA, A-DNA, and Z-DNA. Triple-stranded DNA structures have been demonstrated in repetitive polypurine:polypyrimidine Microsatellite sequences and Satellite DNA. B-DNA is the most common form of DNA in vivo and is a more narrow, elongated helix than A-DNA. Its wide major groove ...
The double helix is the dominant tertiary structure for biological DNA, and is also a possible structure for RNA. Three DNA conformations are believed to be found in nature, A-DNA, B-DNA, and Z-DNA. The "B" form described by James D. Watson and Francis Crick is believed to predominate in cells. [2]
The double helix is an important tertiary structure in nucleic acid molecules which is intimately connected with the molecule's secondary structure. A double helix is formed by regions of many consecutive base pairs. The nucleic acid double helix is a spiral polymer, usually right-handed, containing two nucleotide strands which base pair together.
In contrast, single-stranded RNA and DNA molecules are not constrained to a regular double helix, and can adopt highly complex three-dimensional structures that are based on short stretches of intramolecular base-paired sequences including both Watson-Crick and noncanonical base pairs, and a wide range of complex tertiary interactions. [25]
The chemical structure of DNA base-pairs . A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA.
A complementary strand of DNA or RNA may be constructed based on nucleobase complementarity. [2] Each base pair, A = T vs. G ≡ C, takes up roughly the same space, thereby enabling a twisted DNA double helix formation without any spatial distortions. Hydrogen bonding between the nucleobases also stabilizes the DNA double helix. [3]