Ads
related to: algebraic lattice method formula sheeteducation.com has been visited by 100K+ users in the past month
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Education.com Blog
kutasoftware.com has been visited by 10K+ users in the past month
uslegalforms.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
An algebraic lattice is complete. (def) 10. A complete lattice is bounded. 11. A heyting algebra is bounded. (def) 12. A bounded lattice is a lattice. (def) 13. A heyting algebra is residuated. 14. A residuated lattice is a lattice. (def) 15. A distributive lattice is modular. [3] 16. A modular complemented lattice is relatively complemented ...
Let be a locally compact group and a discrete subgroup (this means that there exists a neighbourhood of the identity element of such that = {}).Then is called a lattice in if in addition there exists a Borel measure on the quotient space / which is finite (i.e. (/) < +) and -invariant (meaning that for any and any open subset / the equality () = is satisfied).
Lattice-theoretic information about the lattice of subgroups can sometimes be used to infer information about the original group, an idea that goes back to the work of Øystein Ore (1937, 1938). For instance, as Ore proved , a group is locally cyclic if and only if its lattice of subgroups is distributive .
The lattice of submodules of a module over a ring is modular. As a special case, the lattice of subgroups of an abelian group is modular. The lattice of normal subgroups of a group is modular. But in general the lattice of all subgroups of a group is not modular. For an example, the lattice of subgroups of the dihedral group of order 8 is not ...
[2]: 126 A function satisfies the one-dimensional wave equation if and only if it is a valuation for the lattice of spacetime coordinates with the natural partial order. A similar result should apply to any partial differential equation solvable by the method of characteristics, but key features of the theory are lacking. [2]: 150–151
Ads
related to: algebraic lattice method formula sheeteducation.com has been visited by 100K+ users in the past month
kutasoftware.com has been visited by 10K+ users in the past month
uslegalforms.com has been visited by 100K+ users in the past month