Search results
Results from the WOW.Com Content Network
The integral of the secant function was historically one of the first integrals of its type ever evaluated, before most of the development of integral calculus. It is important because it is the vertical coordinate of the Mercator projection , used for marine navigation with constant compass bearing .
For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [1]
The integral of secant cubed is a frequent and challenging [1] indefinite integral of elementary calculus: = + + = ( + | + |) + = ( + ) +, | | < where is the inverse Gudermannian function, the integral of the secant function.
An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
An even larger, multivolume table is the Integrals and Series by Prudnikov, Brychkov, and Marichev (with volumes 1–3 listing integrals and series of elementary and special functions, volume 4–5 are tables of Laplace transforms).
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
Integral sine in the complex plane, plotted with a variant of domain coloring. Integral cosine in the complex plane. Note the branch cut along the negative real axis. In mathematics, trigonometric integrals are a family of nonelementary integrals involving trigonometric functions.
This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.