enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oxaloacetic acid - Wikipedia

    en.wikipedia.org/wiki/Oxaloacetic_acid

    Malate is acted on by malate dehydrogenase to become oxaloacetate, producing a molecule of NADH. After that, oxaloacetate will be recycled to aspartate, as transaminases prefer these keto acids over the others. This recycling maintains the flow of nitrogen into the cell. Relationship of oxaloacetic acid, malic acid, and aspartic acid

  3. Malate dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Malate_dehydrogenase

    The amino acid sequences of archaeal MDH are more similar to that of LDH than that of MDH of other organisms. This indicates that there is a possible evolutionary linkage between lactate dehydrogenase and malate dehydrogenase. [8] Each subunit of the malate dehydrogenase dimer has two distinct domains that vary in structure and functionality.

  4. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    Oxaloacetate + 2 H + + 2 e − → Malate-0.17 [10] While under standard conditions malate cannot reduce the more electronegative NAD +:NADH couple, in the cell the concentration of oxaloacetate is kept low enough that Malate dehydrogenase can reduce NAD + to NADH during the citric acid cycle. Fumarate + 2 H + + 2 e − → Succinate +0.03 [9]

  5. Gluconeogenesis - Wikipedia

    en.wikipedia.org/wiki/Gluconeogenesis

    Other glucogenic amino acids and all citric acid cycle intermediates (through conversion to oxaloacetate) can also function as substrates for gluconeogenesis. [9] Generally, human consumption of gluconeogenic substrates in food does not result in increased gluconeogenesis. [10] In ruminants, propionate is the principal gluconeogenic substrate.

  6. Malate–aspartate shuttle - Wikipedia

    en.wikipedia.org/wiki/Malate–aspartate_shuttle

    After malate reaches the mitochondrial matrix, it is converted by mitochondrial malate dehydrogenase into oxaloacetate, during which NAD + is reduced with two electrons to form NADH. Oxaloacetate is then transformed into aspartate (since oxaloacetate cannot be transported into the cytosol) by mitochondrial aspartate aminotransferase.

  7. C4 carbon fixation - Wikipedia

    en.wikipedia.org/wiki/C4_carbon_fixation

    1. CO 2 is fixed to produce a four-carbon molecule (malate or aspartate). 2. The molecule exits the cell and enters the bundle sheath cells. 3. It is then broken down into CO 2 and pyruvate. CO 2 enters the Calvin cycle to produce carbohydrates. 4. Pyruvate reenters the mesophyll cell, where it is reused to produce malate or aspartate.

  8. California vote count is slow, that doesn't mean it's 'rigged ...

    www.aol.com/california-vote-count-slow-doesnt...

    Vice President Kamala Harris won California and its 54 electoral votes by 20 percentage points, with The Associated Press calling it for her as polls closed at 8 p.m. Pacific time on Election Day.

  9. Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+ ...

    en.wikipedia.org/wiki/Malate_dehydrogenase...

    The systematic name of this enzyme class is (S)-malate:NADP + oxidoreductase (oxaloacetate-decarboxylating). This enzyme participates in pyruvate metabolism and carbon fixation . NADP-malic enzyme is one of three decarboxylation enzymes used in the inorganic carbon concentrating mechanisms of C4 and CAM plants.