enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dominance (genetics) - Wikipedia

    en.wikipedia.org/wiki/Dominance_(genetics)

    Autosomal dominant and autosomal recessive inheritance, the two most common Mendelian inheritance patterns. An autosome is any chromosome other than a sex chromosome.. In genetics, dominance is the phenomenon of one variant of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome.

  3. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    Thus, this test yields 2 possible situations: If any of the offspring produced express the recessive trait, the individual in question is heterozygous for the dominant allele. [1] If all of the offspring produced express the dominant trait, the individual in question is homozygous for the dominant allele. [1]

  4. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    Since dominant traits mask recessive traits (assuming no epistasis), there are nine combinations that have the phenotype round yellow, three that are round green, three that are wrinkled yellow, and one that is wrinkled green. The ratio 9:3:3:1 is the expected outcome when crossing two double-heterozygous parents with unlinked genes.

  5. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    In a dominant-recessive inheritance, an average of 25% are homozygous with the dominant trait, 50% are heterozygous showing the dominant trait in the phenotype (genetic carriers), 25% are homozygous with the recessive trait and therefore express the recessive trait in the phenotype. The genotypic ratio is 1: 2 : 1, and the phenotypic ratio is 3: 1.

  6. Genotype - Wikipedia

    en.wikipedia.org/wiki/Genotype

    The possible genotypes of the offspring can then be determined by combining the parent genotypes. [10] In the example on the right, both parents are heterozygous, with a genotype of Bb. The offspring can inherit a dominant allele from each parent, making them homozygous with a genotype of BB.

  7. Monohybrid cross - Wikipedia

    en.wikipedia.org/wiki/Monohybrid_cross

    Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F 1 generation are heterozygous and share the same dominant phenotype (2), while the F 2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).

  8. Zygosity - Wikipedia

    en.wikipedia.org/wiki/Zygosity

    The words homozygous, heterozygous, and hemizygous are used to describe the genotype of a diploid organism at a single locus on the DNA. Homozygous describes a genotype consisting of two identical alleles at a given locus, heterozygous describes a genotype consisting of two different alleles at a locus, hemizygous describes a genotype consisting of only a single copy of a particular gene in an ...

  9. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    The idea of a dihybrid cross came from Gregor Mendel when he observed pea plants that were either yellow or green and either round or wrinkled. Crossing of two heterozygous individuals will result in predictable ratios for both genotype and phenotype in the offspring. The expected phenotypic ratio of crossing heterozygous parents would be 9:3:3 ...