Search results
Results from the WOW.Com Content Network
The memorylessness property asserts that the number of previously failed trials has no effect on the number of future trials needed for a success. Geometric random variables can also be defined as taking values in N 0 {\displaystyle \mathbb {N} _{0}} , which describes the number of failed trials before the first success in a sequence of ...
The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .
In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]
This is a known characteristic of the exponential distribution, i.e., its memoryless property. Intuitively, this means that it does not matter how long it has been since the last renewal epoch, the remaining time is still probabilistically the same as in the beginning of the holding time interval.
A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).
M stands for "Markov" or "memoryless", and means arrivals occur according to a Poisson process; D stands for "deterministic", and means jobs arriving at the queue require a fixed amount of service; k describes the number of servers at the queueing node (k = 1, 2, 3, ...) If the node has more jobs than servers, then jobs will queue and wait for ...
For example, if the renewal process is modelling the numbers of breakdown of different machines, then the holding time represents the time between one machine breaking down before another one does. The Poisson process is the unique renewal process with the Markov property , [ 1 ] as the exponential distribution is the unique continuous random ...
A point process is called a simple point process when the probability of any of its two points coinciding in the same position, on the underlying space, is zero. For point processes in general on the real line, the property of orderliness implies that the process is simple, [55] which is the case for the homogeneous Poisson point process. [56]