Search results
Results from the WOW.Com Content Network
Related changes; Upload file; Special pages; Permanent link; ... In statistics, a k-statistic is a minimum-variance unbiased estimator of a cumulant. [1] [2] References
The zeta distribution has uses in applied statistics and statistical mechanics, and perhaps may be of interest to number theorists. It is the Zipf distribution for an infinite number of elements. The Hardy distribution , which describes the probabilities of the hole scores for a given golf player.
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
Consider, as an example, the k-nearest neighbour smoother, which is the average of the k nearest measured values to the given point. Then, at each of the n measured points, the weight of the original value on the linear combination that makes up the predicted value is just 1/k. Thus, the trace of the hat matrix is n/k.
K-distribution arises as the consequence of a statistical or probabilistic model used in synthetic-aperture radar (SAR) imagery. The K-distribution is formed by compounding two separate probability distributions, one representing the radar cross-section, and the other representing speckle that is a characteristic of coherent imaging. It is also ...
In inferential statistics, a range of plausible values for some unknown parameter, such as a population mean, defined as an interval with a lower bound and an upper bound. [2] The precise values of these bounds are calculated from a pre-determined confidence level, chosen by the researcher. The confidence level represents the frequency of ...
For any population probability distribution on finitely many values, and generally for any probability distribution with a mean and variance, it is the case that +, where Q(p) is the value of the p-quantile for 0 < p < 1 (or equivalently is the k-th q-quantile for p = k/q), where μ is the distribution's arithmetic mean, and where σ is the ...