enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    In some bacteria and archaea, ATP synthesis is driven by the movement of sodium ions through the cell membrane, rather than the movement of protons. [ 78 ] [ 79 ] Archaea such as Methanococcus also contain the A 1 A o synthase, a form of the enzyme that contains additional proteins with little similarity in sequence to other bacterial and ...

  3. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    This potential is then used to drive ATP synthase and produce ATP from ADP and a phosphate group. Biology textbooks often state that 38 ATP molecules can be made per oxidized glucose molecule during cellular respiration (2 from glycolysis, 2 from the Krebs cycle, and about 34 from the electron transport system). [5]

  4. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    Organisms capable of photosynthesis also have ATP synthase across the thylakoid membrane, which in plants is located in the chloroplast and in cyanobacteria is located in the cytoplasm. Eukaryotic ATP synthases are F-ATPases (which usually work as ATP synthases instead of ATPases in cellular environments) and running "in reverse" for an ATPase ...

  5. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    The generation of ATP by chemiosmosis occurs in mitochondria and chloroplasts, as well as in most bacteria and archaea. For instance, in chloroplasts during photosynthesis, an electron transport chain pumps H + ions (protons) in the stroma (fluid) through the thylakoid membrane to the thylakoid spaces.

  6. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    Most useful ATP analogs cannot be hydrolyzed as ATP would be; instead, they trap the enzyme in a structure closely related to the ATP-bound state. Adenosine 5′-(γ-thiotriphosphate) is an extremely common ATP analog in which one of the gamma-phosphate oxygens is replaced by a sulfur atom; this anion is hydrolyzed at a dramatically slower rate ...

  7. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).

  8. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    All organisms produce a phosphate compound, ATP, which is the universal energy currency of life. In photophosphorylation, light energy is used to pump protons across a biological membrane, mediated by flow of electrons through an electron transport chain .

  9. Entner–Doudoroff pathway - Wikipedia

    en.wikipedia.org/wiki/Entner–Doudoroff_pathway

    While anaerobic bacteria must rely on the glycolysis pathway to create a greater percentage of their required ATP thus its 2 ATP production is more favored over the ED pathway's 1 ATP production. [5] Examples of bacteria using the pathway are: Pseudomonas, [8] a genus of Gram-negative bacteria; Azotobacter, [9] a genus of Gram-negative bacteria