Search results
Results from the WOW.Com Content Network
Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.
An xy-Cartesian coordinate system rotated through an angle to an x′y′-Cartesian coordinate system In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and ...
Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior (in practice often constituted by task performance).
In mathematics, reflection through the origin refers to the point reflection of Euclidean space R n across the origin of the Cartesian coordinate system. Reflection through the origin is an orthogonal transformation corresponding to scalar multiplication by − 1 {\displaystyle -1} , and can also be written as − I {\displaystyle -I} , where I ...
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry
A typical example of glide reflection in everyday life would be the track of footprints left in the sand by a person walking on a beach. Frieze group nr. 6 (glide-reflections, translations and rotations) is generated by a glide reflection and a rotation about a point on the line of reflection. It is isomorphic to a semi-direct product of Z and C 2.
p2mm: TRHVG (translation, 180° rotation, horizontal line reflection, vertical line reflection, and glide reflection) Formally, a frieze group is a class of infinite discrete symmetry groups of patterns on a strip (infinitely wide rectangle), hence a class of groups of isometries of the plane, or of a strip.
Yes: A reflection in point is not a reflection in a mirror. By definition, a mirror is a plane in 3-space, generalized to a hyperplane in n-space. So, mirror reflections are the same as reflections if and only if you choose the narrow definition of reflection. This leaves the question open.