Search results
Results from the WOW.Com Content Network
An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.
Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity , or oblateness . The usual notation for flattening is f {\displaystyle f} and its definition in terms of the semi-axes a {\displaystyle a} and b {\displaystyle b} of ...
Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2, with radius r = a = b. For the parabola, the standard form has the focus on the x-axis at the point (a, 0) and the directrix the line with equation x = −a. In standard form the parabola will always pass through the ...
Through a change of coordinates (a rotation of axes and a translation of axes), equation can be put into a standard form, which is usually easier to work with. It is always possible to rotate the coordinates at a specific angle so as to eliminate the x′y′ term. Substituting equations and into equation , we obtain
The equation is for an ellipse, since both eigenvalues are positive. (Otherwise, if one were positive and the other negative, it would be a hyperbola.) The principal axes are the lines spanned by the eigenvectors. The minimum and maximum distances to the origin can be read off the equation in diagonal form.
The standard form of the equation of a central conic section is obtained when the conic section is translated and rotated so that its center lies at the center of the coordinate system and its axes coincide with the coordinate axes. This is equivalent to saying that the coordinate system's center is moved and the coordinate axes are rotated to ...
This equation reduces to that of the volume of a sphere when all three elliptic radii are equal, and to that of an oblate or prolate spheroid when two of them are equal. The volume of an ellipsoid is 2 / 3 the volume of a circumscribed elliptic cylinder , and π / 6 the volume of the circumscribed box.
The classic applications of elliptic coordinates are in solving partial differential equations, e.g., Laplace's equation or the Helmholtz equation, for which elliptic coordinates are a natural description of a system thus allowing a separation of variables in the partial differential equations. Some traditional examples are solving systems such ...