enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Using the x-convention, the 3-1-3 extrinsic Euler angles φ, θ and ψ (around the z-axis, x-axis and again the -axis) can be obtained as follows: = ⁡ (,) = ⁡ = ⁡ (,) Note that atan2( a , b ) is equivalent to arctan ⁠ a / b ⁠ where it also takes into account the quadrant that the point ( b , a ) is in; see atan2 .

  4. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  5. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  6. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.

  7. Translation of axes - Wikipedia

    en.wikipedia.org/wiki/Translation_of_axes

    For an xyz-Cartesian coordinate system in three dimensions, suppose that a second Cartesian coordinate system is introduced, with axes x', y' and z' so located that the x' axis is parallel to the x axis and h units from it, the y' axis is parallel to the y axis and k units from it, and the z' axis is parallel to the z axis and l units from it.

  8. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    The axes may then be referred to as the x-axis, y-axis, and z-axis, respectively. Then the coordinate planes can be referred to as the xy-plane, yz-plane, and xz-plane. In mathematics, physics, and engineering contexts, the first two axes are often defined or depicted as horizontal, with the third axis pointing up.

  9. Rotational invariance - Wikipedia

    en.wikipedia.org/wiki/Rotational_invariance

    which maps elements from a subset X of the real line to itself, rotational invariance may also mean that the function commutes with rotations of elements in X. This also applies for an operator that acts on such functions. An example is the two-dimensional Laplace operator