Search results
Results from the WOW.Com Content Network
Both definitions are also valid for the diameter of a sphere. In more modern usage, the length d {\displaystyle d} of a diameter is also called the diameter. In this sense one speaks of the diameter rather than a diameter (which refers to the line segment itself), because all diameters of a circle or sphere have the same length, this being ...
In graph theory, the diameter of a connected undirected graph is the farthest distance between any two of its vertices. That is, it is the diameter of a set, for the set of vertices of the graph, and for the shortest-path distance in the graph. Diameter may be considered either for weighted or for unweighted graphs.
Diameter (graph theory), the longest distance between two vertices of a graph; Diameter (group theory), the maximum diameter of a Cayley graph of the group; Equivalent diameter, the diameter of a circle or sphere with the same area, perimeter, or volume as another object; Hydraulic diameter, the equivalent diameter of a tube or channel for fluids
Elementary mathematics, also known as primary or secondary school mathematics, is the study of mathematics topics that are commonly taught at the primary or secondary school levels around the world. It includes a wide range of mathematical concepts and skills, including number sense , algebra , geometry , measurement , and data analysis .
Semicircle: one of the two possible arcs determined by the endpoints of a diameter, taking its midpoint as centre. In non-technical common usage it may mean the interior of the two-dimensional region bounded by a diameter and one of its arcs, that is technically called a half-disc. A half-disc is a special case of a segment, namely the largest one.
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
where C is the circumference of a circle, d is the diameter, and r is the radius. More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width. = where A is the area of a circle. More generally, =
A diameter of one hyperbola is conjugate to its reflection in the asymptote, which is a diameter of the other hyperbola. As perpendicularity is the relation of conjugate diameters of a circle, so hyperbolic orthogonality is the relation of conjugate diameters of rectangular hyperbolas.