enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hahn–Banach theorem - Wikipedia

    en.wikipedia.org/wiki/HahnBanach_theorem

    The theorem is named for the mathematicians Hans Hahn and Stefan Banach, who proved it independently in the late 1920s.The special case of the theorem for the space [,] of continuous functions on an interval was proved earlier (in 1912) by Eduard Helly, [1] and a more general extension theorem, the M. Riesz extension theorem, from which the HahnBanach theorem can be derived, was proved in ...

  3. Amenable group - Wikipedia

    en.wikipedia.org/wiki/Amenable_group

    The existence of a shift-invariant, finitely additive probability measure on the group Z also follows easily from the HahnBanach theorem this way. Let S be the shift operator on the sequence space ℓ ∞ ( Z ), which is defined by ( Sx ) i = x i +1 for all x ∈ ℓ ∞ ( Z ), and let u ∈ ℓ ∞ ( Z ) be the constant sequence u i = 1 for ...

  4. p-adic analysis - Wikipedia

    en.wikipedia.org/wiki/P-adic_analysis

    In many ways p-adic analysis is less subtle than classical analysis, since the ultrametric inequality means, for example, that convergence of infinite series of p-adic numbers is much simpler. Topological vector spaces over p-adic fields show distinctive features; for example aspects relating to convexity and the HahnBanach theorem are ...

  5. Functional analysis - Wikipedia

    en.wikipedia.org/wiki/Functional_analysis

    Together with the HahnBanach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space , pointwise boundedness is equivalent to uniform boundedness in operator norm.

  6. Uniform boundedness principle - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness_principle

    Together with the HahnBanach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

  7. Vector-valued Hahn–Banach theorems - Wikipedia

    en.wikipedia.org/wiki/Vector-valued_HahnBanach...

    In mathematics, specifically in functional analysis and Hilbert space theory, vector-valued HahnBanach theorems are generalizations of the HahnBanach theorems from linear functionals (which are always valued in the real numbers or the complex numbers) to linear operators valued in topological vector spaces (TVSs).

  8. Glossary of functional analysis - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_functional...

    HahnBanach The HahnBanach theorem states: given a linear functional ℓ {\displaystyle \ell } on a subspace of a complex vector space V , if the absolute value of ℓ {\displaystyle \ell } is bounded above by a seminorm on V , then it extends to a linear functional on V still bounded by the seminorm.

  9. Locally convex topological vector space - Wikipedia

    en.wikipedia.org/wiki/Locally_convex_topological...

    A notable example of a result which had to wait for the development and dissemination of general locally convex spaces (amongst other notions and results, like nets, the product topology and Tychonoff's theorem) to be proven in its full generality, is the Banach–Alaoglu theorem which Stefan Banach first established in 1932 by an elementary ...