enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trigonometry of a tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trigonometry_of_a_tetrahedron

    The 6 edge lengths - associated to the six edges of the tetrahedron. The 12 face angles - there are three of them for each of the four faces of the tetrahedron. The 6 dihedral angles - associated to the six edges of the tetrahedron, since any two faces of the tetrahedron are connected by an edge.

  3. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    A space-filling tetrahedral disphenoid inside a cube. Two edges have dihedral angles of 90°, and four edges have dihedral angles of 60°. A disphenoid is a tetrahedron with four congruent triangles as faces; the triangles necessarily have all angles acute. The regular tetrahedron is a special case of a disphenoid.

  4. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    The dihedral angles for the edge-transitive polyhedra are: Picture Name Schläfli symbol Vertex/Face configuration exact dihedral angle ... Tetrahedron {3,3} (3.3.3)

  5. Dihedral angle - Wikipedia

    en.wikipedia.org/wiki/Dihedral_angle

    A dihedral angle is the angle between two intersecting planes or half-planes. It is a plane angle formed on a third plane, perpendicular to the line of intersection between the two planes or the common edge between the two half-planes. In higher dimensions, a dihedral angle represents the angle between two hyperplanes.

  6. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    This fact can be used to calculate the dihedral angles themselves for a regular or edge-symmetric ideal polyhedron (in which all these angles are equal), by counting how many edges meet at each vertex: an ideal regular tetrahedron, cube or dodecahedron, with three edges per vertex, has dihedral angles = / = (), an ideal regular octahedron or ...

  7. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    The tetrahedron is self-dual, i.e. it pairs with itself. The cube and octahedron are dual to each other. The icosahedron and dodecahedron are dual to each other.

  8. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    where ranges over all six of the dihedral angles between any two planes that contain the tetrahedral faces OAB, OAC, OBC and ABC. [5] A useful formula for calculating the solid angle of the tetrahedron at the origin O that is purely a function of the vertex angles θ a, θ b, θ c is given by L'Huilier's theorem [6] [7] as

  9. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    The tetrahedron is the 3-simplex, a simple shape that requires three dimensions. ... This formula is particularly useful when ... from which the dihedral angles are ...