Search results
Results from the WOW.Com Content Network
Sodium chloride / ˌ s oʊ d i ə m ˈ k l ɔːr aɪ d /, [8] commonly known as edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chlorine ions. It is transparent or translucent, brittle, hygroscopic , and occurs as the mineral halite .
The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide (caustic soda), [ 1 ] which are commodity chemicals required by industry.
Chlorine can be manufactured by the electrolysis of a sodium chloride solution (), which is known as the Chloralkali process.The production of chlorine results in the co-products caustic soda (sodium hydroxide, NaOH) and hydrogen gas (H 2).
Each ion can be either monatomic (termed simple ion), such as sodium (Na +) and chloride (Cl −) in sodium chloride, or polyatomic, such as ammonium (NH + 4) and carbonate (CO 2− 3) ions in ammonium carbonate. Salts containing basic ions hydroxide (OH −) or oxide (O 2−) are classified as bases, such as sodium hydroxide and potassium oxide.
From cold solutions, salt crystallises as the dihydrate NaCl·2H 2 O. Solutions of sodium chloride have very different properties from those of pure water; the freezing point is −21.12 °C (−6.02 °F) for 23.31 wt% of salt, and the boiling point of saturated salt solution is around 108.7 °C (227.7 °F). [4]
A balanced salt solution (BSS) is a solution made to a physiological pH and isotonic salt concentration. Solutions most commonly include sodium, potassium, calcium, magnesium, and chloride. [1] Balanced salt solutions are used for washing tissues and cells and are usually
Brine (or briny water) is a high-concentration solution of salt (typically sodium chloride or calcium chloride) in water.In diverse contexts, brine may refer to the salt solutions ranging from about 3.5% (a typical concentration of seawater, on the lower end of that of solutions used for brining foods) up to about 26% (a typical saturated solution, depending on temperature).
The tables below present an example of an artificial seawater (35.00‰ of salinity) preparation devised by Kester, Duedall, Connors and Pytkowicz (1967). [1] The recipe consists of two lists of mineral salts, the first of anhydrous salts that can be weighed out, the second of hydrous salts that should be added to the artificial seawater as a solution.