enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power .

  3. Statistical inference - Wikipedia

    en.wikipedia.org/wiki/Statistical_inference

    Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.

  4. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Statistical hypothesis testing is a key technique of both frequentist inference and Bayesian inference, although the two types of inference have notable differences. Statistical hypothesis tests define a procedure that controls (fixes) the probability of incorrectly deciding that a default position (null hypothesis) is incorrect. The procedure ...

  5. Power (statistics) - Wikipedia

    en.wikipedia.org/wiki/Power_(statistics)

    Statistical testing uses data from samples to assess, or make inferences about, a statistical population.For example, we may measure the yields of samples of two varieties of a crop, and use a two sample test to assess whether the mean values of this yield differs between varieties.

  6. Permutation test - Wikipedia

    en.wikipedia.org/wiki/Permutation_test

    A permutation test involves two or more samples. The null hypothesis is that all samples come from the same distribution H 0 : F = G {\displaystyle H_{0}:F=G} . Under the null hypothesis , the distribution of the test statistic is obtained by calculating all possible values of the test statistic under possible rearrangements of the observed data.

  7. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    In bootstrap-resamples, the 'population' is in fact the sample, and this is known; hence the quality of inference of the 'true' sample from resampled data (resampled → sample) is measurable. More formally, the bootstrap works by treating inference of the true probability distribution J , given the original data, as being analogous to an ...

  8. Two-sample hypothesis testing - Wikipedia

    en.wikipedia.org/wiki/Two-sample_hypothesis_testing

    In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .

  9. Point estimation - Wikipedia

    en.wikipedia.org/wiki/Point_estimation

    , X n) be an estimator based on a random sample X 1,X 2, . . . , X n, the estimator T is called an unbiased estimator for the parameter θ if E[T] = θ, irrespective of the value of θ. [1] For example, from the same random sample we have E(x̄) = μ (mean) and E(s 2) = σ 2 (variance), then x̄ and s 2 would be unbiased estimators for μ and ...